
SecCAN: A Practical Secure Control Area Network for Automobiles 

Mohammad Arman Ullah1, Sheikh Ghafoor1, Mike Rogers1 and Stacy Prowell2  
1Department of Computer Science, Tennessee Technological University, Cookeville, USA  
2Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak 
Ridge, USA  
Mullah42@students.tntech.edu 
sghafoor@tntech.edu 
mrogers@tntech.edu 
prowellsj@ornl.gov 
DOI: 10.34190/IWS.21.106 
 
Abstract: Controller Area Networks (CAN) are the backbone for communication among devices in modern automobiles. 
Although CAN bus is reliable, simple, low-cost, and low-power, which are desirable traits for embedded systems, it suffers 
from many security vulnerabilities.  Unfortunately, security solutions for general purpose computers and networks do not 
generalize to CAN. First, many security solutions cannot be adopted by the automobile industry because they do not abide 
by constraints such as cost, real-time requirements, and backward compatibility. Furthermore, almost all the current 
proposed solutions violate one or more practical constraints of CAN, and so will be difficult for the automobile industry to 
adopt.  Second, current research works in securing CAN only address a small subset of security vulnerabilities. We have 
developed a secure CAN protocol called SecCAN that uses lightweight encryption and message authentication using 
segmentation based shared secret group keys. Experiments with simulation and real ECU testbed show that our proposed 
protocol can effectively prevent masquerade and replay attacks. 
 
Keywords: in-vehicle network security, CAN bus, embedded system network, vehicle security, controller area network 

1. Introduction 

A modern automobile consists of mechanical parts (such as the engine, chassis, brakes, etc.) that are controlled 
by software running on small embedded computers called Electronic Control Units (ECU). These ECUs are 
responsible for performing specific functions such as cruise control, deploying airbags during collisions, etc. In 
modern vehicles, virtually all operations are controlled by ECUs. For the proper functioning of a vehicle, these 
ECUs communicate with each other over a network using the Control Area Network (CAN) protocol. A modern 
vehicle has as many as 70 or more ECUs with millions of lines of code. These ECUs are used for different 
subsystems of a vehicle such as engine control, transmission control, airbags, cruise control, Anti-lock braking 
system, door control, etc. 
 
CAN was built to be lightweight, functional, and reliable, and because of these characteristics has been a 
standard for in-vehicle networks for over two and a half decades. The designers of CAN assumed that all the 
ECUs would function according to their original purposes. However, CAN is not secure and has been shown to 
have many security vulnerabilities. For example, CAN is a broadcast protocol and a CAN message does not have 
a source or destination address and is therefore vulnerable to replay and masquerade attack. Also, CAN is a zero 
driven bus, and a compromised or malfunctioning ECU may take over the bus by continuously sending zeros to 
the bus, thereby disrupting all the communication among the ECUs. Furthermore, some of the ECUs are 
connected to the outside world via wireless or wired networks. For example, an attacker can manipulate the 
brakes in an automobile by wirelessly accessing an MP3 player that is connected to the CAN (Koscher et al, 2010). 
 
Because of the aforementioned vulnerabilities, the CAN bus has the potential to cause a vehicle to operate 
poorly, or even to crash, because braking, acceleration, and steering are increasingly "drive by wire" systems 
managed by the CAN bus. Therefore, attackers can perform various life-threatening activities such as stopping 
the vehicle suddenly on an interstate, accelerating the vehicle abruptly, steering the vehicle left or right, enabling 
the windshield wiper-washer to blind the driver, etc. For example, hackers remotely controlled a Jeep Cherokee 
utilizing a faulty telematic unit and performed various malicious activities such as changing climate control, 
changing the radio station, turning on the windshield wipers, disabling the transmission, etc. (Greenberg et al, 
2015). 
 
Any pragmatic solutions to the security vulnerabilities of CAN must adhere to cost, hard real-time, and 
interoperability constraints. The automobile industry is very competitive, as a result, it is very sensitive to cost 

364

mailto:Mullah42@students.tntech.edu
mailto:sghafoor@tntech.edu
mailto:mrogers@tntech.edu
mailto:prowellsj@ornl.gov


 
Mohammad Arman Ullah et al. 

increases. For example, if a solution increases the manufacturing cost even by 10 dollars per ECU (a seemingly 
small amount compared to the cost of a vehicle), it would increase the total cost of the vehicle by 700 dollars (a 
typical vehicle has about 70 ECUs). Such solutions are unlikely to be adopted by the auto industry. 
 
We have developed a secure CAN protocol that addresses some of the existing vulnerabilities of CAN and 
prevents masquerade and replay attacks without violating any of the practical constraints. We have tested and 
evaluated our proposed technique using the BUSMASTER simulator as well as in a real testbed. The experimental 
results indicate that our proposed protocol can effectively prevent masquerade and replay attacks. 
 
Our contributions are as follows. We give an overview of CAN and describe its vulnerabilities in Section 2. We 
discuss previous research works for securing CAN with a focus on how they are violating the practical constraints 
required by the current auto industry in Section 3. We present SecCAN, which is a practical secure CAN protocol 
that does not violate any practical constraints in Section 4. Section 5 describes the experiments and presents 
the results that show the efficacy of SecCAN.  

2. Overview and vulnerabilities of can 

CAN bus is a standard designed to enable communication among microcontrollers. CAN is a broadcast based 
shared medium protocol. The company Robert Bosch GmbH has published several CAN specifications (Bosch, 
1991).  The most common specification is CAN 2.0 that the company published in 1991. CAN 2.0 has two variants. 
CAN 2.0A is a standard format with an 11-bit message identifier, and CAN 2.0B is an extended format with a 29-
bit identifier. In 2012, Bosch released CAN FD 1.0 (CAN with Flexible Data-Rate). CAN FD 1.0 is compatible with 
existing CAN 2.0 networks so that CAN FD 1.0 devices can coexist with CAN 2.0 devices. 

 

Figure 1: CAN frame 

2.1 Vulnerabilities of CAN 

Traditionally, the major concerns in the design of CAN have been safety, reliability, and cost, whereas security 
has either been a minor concern or not considered at all. CAN does not have any built-in security support such 
as authentication, encryption, or prevention of Denial of Service (DoS) Attacks. Absent these important features, 
CAN suffers from vulnerabilities that attackers can exploit. Not only does CAN lack security features, but it also 
has features, such as a zero-driven bus, that are inherently easy to attack. The following describes in more detail 
both the features of CAN and features that are absent in the protocol that result in vulnerabilities that can be 
exploited. 

 No source or destination address in CAN Frame 

 No clock or sequence number to prevent replay 

 Zero driven bus 

 No encryption mechanism to encrypt CAN data 

 No protection against malicious firmware or software updates 

 No mechanism to detect a malicious device 

2.2 Constraints and considerations for a secure implementation 

To understand the details of CAN Bus security vulnerabilities, and be able to evaluate possible solutions and 
techniques others have proposed and implemented to-date, certain constraints that any implementation should 
meet to be a viable solution should be understood. 
 
In particular, viable solutions should take into account that CAN Bus is an embedded real-time system in a market 
where cost savings are important. Violating constraints may yield implementations that few are willing or able 
to adopt. Following are the major constraints for implementing security in the CAN bus: 

365



 
Mohammad Arman Ullah et al. 

 
 1. Monetary Cost: As mentioned before, the markets utilizing CAN have competition and require the cost 

to be low. This was indeed a major focus the protocol addressed. Adaptations requiring substantial 
hardware changes, whether to fit new designs or to provide substantially more processing power for 
cryptographic operations, must consider the cost increase required. 

 2. Hard Real-time: CAN is utilized in countless real-time environments. To ensure quick responses and 
bounded round trip times, any security mechanisms cannot significantly increase message-transmission 
and/or processing time. 

 3. Interoperability: The length of a frame transmitted in a CAN bus is fixed, as well as the sizes of its fields 
and their position within the frame. Likewise, protocol behaviours, such as its arbitration method, are 
standardized. Solutions that require changes to the protocol’s features or frame layout may make newly 
manufactured devices incompatible with existing CAN networks. Such solutions, unfortunately, will require 
complete re-implementations of existing CAN networks, and therefore, those solutions are not practical. 

3. Related work 

Various literature has been published to demonstrate CAN bus vulnerabilities experimentally. Furthermore, 
several works are published discussing different techniques to overcome the vulnerabilities of CAN bus. The 
techniques that are proposed in various literature are: 

 Adding a MAC computed with the pre-shared secret key 

 Using a counter to count the number of transmitted or received messages 

 Using a counter to handle invalid authentication 

 Encrypting messages 

 Checking the hash value of software 

 Checking the certificate of an ECU 

 Using an intrusion detection system 

Though these techniques solve some of the vulnerabilities of CAN, the implementation of these techniques 
violates some of the constraints of CAN. Figure 2 illustrates and summarizes, from the literature, different 
vulnerability mitigation techniques and constraints that their implementations violate. 

 

Figure 2: CAN vulnerabilities discussed in different literature 

366



 
Mohammad Arman Ullah et al. 

4. Proposed SecCAN protocol 

The software architecture of a typical CAN implementation is shown in Figure 3. The Data layer gathers or 
generates data from sensors. On the sending side, the Encapsulation/Decapsulation layer creates a CAN message 
for the data and the Transmit/Receive layer transmits the message to the CAN bus. On the receiving side, the 
Transmit/Receive layer receives the message and the Encapsulation/Decapsulation layer extracts the data from 
CAN message and takes the necessary actions (for example, sending a reply message or sending a signal to an 
actuator). In the SecCAN protocol, we propose to replace the Encapsulation/Decapsulation layer with a secure 
version to ensure secure message transmission. 
 
In normal operating condition, all the ECUs of a vehicle do not communicate with each other. The 
communications are generally localized among few ECUs. For example, a vehicle’s cruise control system 
normally communicates with the rotating drive shaft, throttle, brake system etc. It does not communicate with 
the vehicle’s entertainment system. In our proposed scheme, ECUs of a vehicle are segmented into groups based 
on their communication patterns. Instead of using pairwise shared keys for each pair of ECUs as done in (Szilagyi 

et al, 2009),(Szilagyi et al, 2010), each group shares a permanent common group MAC key (Mд) and a permanent 

common group encryption key (Kд), thereby reducing the number of keys, which simplifies key generation and 

key distribution. A group represents a vehicle subsystem, and the valid messages for a group are known by the 
manufacturer of the vehicle. Therefore, the groups are formed according to what messages are valid for each 
group. 

4.1 Overview of key distribution and message transmission 

An ECU in a group is selected as root and at the beginning of a session, the root generates a session MAC key, 
Ms, and a session encryption key, Ks. Then the root distributes the Ms and Ks to the other nodes in its group. The 
root sends the two session keys, Ms and Ks, in two successive messages by inserting a key in the data field of a 
CAN message and securing it using the permanent MAC key and the permanent encryption key. Other members 
of the group decrypt and authenticate the message using permanent keys and receive the session keys. Any 
further communication within the group is secured using the session keys. A session is defined as the time from 
the vehicle’s ignition until it is switched off. A typical session may last from a few minutes (for a short drive such 
as going to the corner grocery store) to a few hours (long distance drive, such as going on a family vacation). 
Figure 4 shows the session key generation and distribution process. 
 
The purpose of the message authentication code is to ensure the origin and data integrity of a message within 
a group. For any message, a 32-bit MAC is computed using the MAC key, a counter, and the data using a message 
digest algorithm. In our implementation we have used SHA-256 as the digest algorithm. The computed MAC is 
divided into two 16-bit parts; the 1st 16-bits is stored in the extended identifier field and the last 16-bits is stored 
in the CRC field. In SecCAN MAC serves two purposes: it provides source authentication as well as message 
integrity. Since MAC provides data integrity it also served the purpose of CRC. In normal CAN communication, 
out of 29 bits of the extended identifier, 11 bits are used for message ID and the rest are unused. SecCAN takes 
advantage of these unused bits to store the MAC without changing the current CAN frame format. The data field 
of the CAN message is encrypted using the encryption key. As a result, our proposed scheme is backward 
compatible and does not require any hardware change.  The details of our proposed algorithm for key 
distribution and message transmission is provided in section 4.2. 

 

 

Figure 3: Software 
architecture 

 

Figure 4: SecCAN simple diagram 

367



 
Mohammad Arman Ullah et al. 

 

4.2 Detail algorithm 

The goal of our solution is implementing SecCAN by changing the software of an ECU without additional 
hardware. This solution enables the manufacturers or the dealers to change the software of existing vehicle's 
ECUs without incurring huge costs. In SecCAN, the ECUs of a vehicle are divided into two categories according 
to their vulnerabilities. The nodes that are connected to the outside world through the Internet, radio frequency, 
Wi-Fi, or Bluetooth are categorized as exposed nodes. The nodes which are not connected to the outside world 
are categorized as internal nodes. The group are formed according to the following two rules: 

 1. Two or more nodes will be in the same group if they communicate with each other in response to events. 

 2. The highest number of members of a group containing an exposed node must be two. 

Our assumption is that it is more likely that an adversary will compromise an exposed node and send a malicious 
message than an internal node. If the session keys of an exposed node are compromised it will impact only one 
other node in that group thereby limiting the damage. Other nodes will not receive the messages sent by the 
compromised node as they belong to different groups (and thus have different session keys). 
 
The root generates a new 64-bit Session MAC Key (Ms) and new 64-bit Session Encryption Key (Ks) and distributes 
the keys to other members of the group in each session. Following are the formal definitions of the necessary 
components for our SecCAN protocol followed by a detailed description of the algorithms for generation and 
distribution of session keys as well as subsequent transmission of messages. 
 
G is the set of all communication groups of a system. The session number is initialized with a fixed number during 
the time of manufacturing and incremented every time when a vehicle is started. G = {G1,G2,G3, . . .,Gl } where Gi 
= {e1,e2,e3, . . .,ej} and Gi ⊂ E and ∃ej,ej ∈ Gi : ej ∈ E. 

GMK is the set of all group MAC keys. GMK = {Mд1,Mд2,Mд3, . . .,Mдl } where Mдi is the group key of Gi and 
Mдi ∈ GMk,Mдj ∈ GMk : Mдi ≠ Mдj. 

GEK is the set of all group encryption keys. 

GEK = {Kд1,Kд2,Kд3, . . .,Kдl } where Kдi is the encryption key of Gi and Kдi ∈ GEk,Kдj ∈ GEk : Kдi ≠ Kдj. 

SMK is the set of group session keys. 

SMK = {∃Msi
j : i <= l and j <= k} and Msi

j is the jth session key of group i and initial value of j = 0 . 

SEK is the set of group session encryption keys. 

SEK = {∃Ksi
j : i <= l and j <= k} and Ksi

j is the jth session encryption key of group i and initial value of j = 0 . 

C is the set of counters. 
C = {C1,C2,C3, . . .,Cm} where Ci is the counter of message mi where mi ∈ M and initially Ci = 0. 

Algorithm for Session keys distribution in group Gi: 

(1) Select an ECU in each group as session keys generator and distributor. 

(2) j = j + 1 where j is the session number. 

(3) Generate a Session MAC Key (Msi
j ) using Msi

j = f (Mдi, j). 

(4) Compute 128-bit MAC using MAC = HMAC(Mдi,Msi
j , j) and truncate it to 32 bit. 

(5) Put the first 16-bit MAC into the extended identifier field, the last 16-bit MAC into CRC field and put the 

64-bit Msi
j into data field to generate a message MAC(mj). 

(6) Generate one time pad (OTP) by using f (j,Kдi), where f (j) is a one way function to change the session 

value. 

(7) Enc(MAC(mj)) = MACW(mj) ⊕ OTP where MACW(mj) is a message mj with MAC but without the first 11-

bit header. 

(8)  Send the message to CAN bus. 

(9) The other members of the group receive the message, verify the message integrity and origin integrity 

by using group key and encryption key. 

368



 
Mohammad Arman Ullah et al. 

(10) In the same way, Session Encryption Key Ksi
j can be sent to other members of the group. 

Receiving session keys in group Gi: 

(1) j = j + 1 where j is the session number. 

(2) Generate one time pad (OTP) by using f (j,Kдi) 

(3) Get MACW(mj) = Enc(MAC(mj)) ⊕ OTP 

(4) Get Msi
j from MACW(mj) 

(5) Get MAC(ext) from MACW(mj) 

(6) Compute 128-bit MAC using MAC = HMAC(Mдi,Msi
j , j) and truncate it to 32 bit. 

(7) Verify MAC(ext) == MAC 

 

Sending message mj in group Gi at session t: 

(1) Cj = Cj + 1. 

(2) Compute 128-bit MAC using MAC = HMAC(mj,Msi
t ,Cj). 

(3) Produce trunc(MAC) where trunc(MAC) is a function to truncate 128-bit MAC to 32-bit MAC. 

(4) Put first 16-bit into extended identifier field and last 16-bit into CRC field and generate MAC(mj) where 

MAC(mj) is a message mj with MAC. 

(5) One Time Pad (OTP)= f (Cj) ⊕ Ksi
t where f (Cj) is a one-way function to change the counter value. 

(6) Enc(MAC(mj)) = MACW(mj) ⊕ OTP where MACW(mj) is a message mj with MAC but without the first 11-

bit header. 

Receiving message mj in group Gi at session t: 

(1) Cj = Cj + 1. 

(2) OTP = f (Cj) ⊕ Ksi
t . 

(3) MACW(mj) = Enc(MAC(mj))⊕OTP and construct MAC(mj) by adding the 11-bit header. 

(4) Compute 128-bit MAC using HMAC(mj,Msi
t ,Cj) and produce trunc(MAC). 

(5) Extract MAC from MAC(mj) and compare the extracted MAC with the trunc(MAC). 

(6) If both are the same, receive the message mj. Otherwise, discard the message. 

5. Implementation and evaluation 

We have evaluated our protocol using a BUSMASTER (BUSMASTER, 2016)] simulator as well as in a real testbed. 
We have designed a set of experiments using 10 ECUs divided into 6 groups. One of the ECUs in each group has 
been selected as the root such that exposed node cannot be a root. The ECUs send and receive messages in a 
predefined order. Table 1 and Figure 5 shows the group formation and an example message scenario. We have 
conducted our experiments to evaluate the following: 

 Group isolation: The objective of this evaluation is to ensure that an ECU can decrypt messages that it is 
supposed to receive i.e. only the messages sent by other ECUs in its group. 

 Adherence to real time constraints: In real vehicles, there are hard real-time constraints for end-to-end 
message delays. These delays vary from 10 ms to 100 ms (Tindell et al, 1995) depending on what ECUs are 
involved in the communication. For example, communication involving the accelerator position (10ms) is 
much lower than the seatbelt warning (100ms). The objective of this experiment is to measure the overhead 
of SecCAN protocol in a real system and to estimate whether SecCAN would be able to abide by the real-
time constraint in actual vehicles.. 

5.1 Group isolation 

Table 1: Example message scenario 

Sender Signal Receiver 

Body Control Module RKE (Remote Keyless Entry) Key press (Message 
ID: 0x101) 

Transmission Control Module 

Body Control Module Ambient temperature (0x102) Engine Control Module, Transmission 
Control Module 

369



 
Mohammad Arman Ullah et al. 

 
Sender Signal Receiver 

Engine Control Module Engine size(0x103), Engine RPM(0x104) Body Control Module 

Engine Control Module Engine coolant temperate (0x105), Engine 
Size(0x103), VIN (0x106) 

Transmission Control Module 

Power Steering Control 
Module 

Steering Position(0x107) Anti-lock Braking System 

Electronic Brake Control 
Module 

Brake(0x108) Anti-lock Braking System, Cruise 
Control Module 

Air Bag Control Module Airbag lamp status(0x109) Mechanical Instrument Cluster 

Engine Control Module RPM (0x111) Mechanical Instrument Cluster 

Entertainment System Radio(0x112) Body Control Module 

 

 

Figure 5: Group formation 

We have evaluated group isolation using both BUSMASTER and the physical testbed. In the case of BUSMASTER, 
we have implemented an in-vehicle network with 10 ECUs and programmed them according to our protocol and 
a test scenario using the BUSMASTER simulation language. The simulation shows that an ECU can receive and 
decrypt the messages sent by ECUs in the same group, while the ECUs of other groups cannot decrypt the 
messages and thus ignore the messages. BUSMASTER has a feature of injecting CAN messages into the network. 
We have crafted normal CAN messages (unencrypted) and injected them into the network. These messages 
were ignored by the ECUs. We have also repeated the same experiment by crafting messages encrypted with 
fictitious keys. These messages were also ignored by the ECUS. For the second set of experiments, we have 
constructed a physical testbed, shown in Figure 6. Our testbed consists of two main types of hardware: ECUs 
and sniffers/injectors. The ECUs of the physical testbed were programmed to implement our protocol using 
MPLAB (MPLAB, 2018). We repeated the same experiments as in the BUSMASTER simulator. Except in case of 
experiments with the physical testbed we have used the push button switches to simulate sending of a message, 
and if a message is correctly received and decrypted the ECU lighted the LED. The experiment shows that ECUs 
of the same group successfully received the messages and lit the LED while the ECUs of other groups did not 
receive the messages successfully and did not light the LED. We have also injected CAN messages through the 
Kvaser leaf from the BUSMASTER to simulate message injection into the network by adversaries. These messages 
were not received by the ECUs. These experiments indicate that our protocol not only successfully secured the 
messages but also isolated them within a group. As a result, even if the session keys of a group are compromised 
the damage is contained within a group. 

 

Figure 6: Physical testbed 

 

Figure 7: Normal CAN and SecCAN 

370



 
Mohammad Arman Ullah et al. 

5.2 Adherence to real time constraints 

This experiment also used the physical testbed. The use of a physical testbed was particularly important for this 
experiment because BUSMASTER cannot simulate the processing power of physical ECUs. Whether the protocol 
can adhere to real-time constraints is directly impacted by both the power of the device on which the protocol 
will run as well as the computational complexity of the protocol. 
 
For this experiment, we instrumented the code that was flashed on the ECUs to measure transmission time and 
compute time. For this implementation, all computation is done by the protocol’s algorithms. In other words, in 
a normal ECU, some computational time might be used to compute temperatures, rotations, etc., but we did 
not include such functionality in our testbed. 
 
Furthermore, we ran two sets of experiments. One set of experiments generated normal CAN traffic, and the 
second set of experiments generated CAN traffic using SecCAN, our secure protocol. 
 
The results of the experiments are shown in Figure 7. The X axis shows the number of messages generated. The 
experiment, for 1 through 5 messages, was executed multiple times, and the average time to send and receive 
the messages was recorded, as shown in the Y axis. The time to send and receive the messages includes the 
computation time at both the sender and receiver as well as the message transmission time. However, 
transmission time for the normal CAN and SecCAN are the same because the message size does not change. 
Therefore, the difference in the two lines in the graph are because of the implementation of our protocol. 
 
The SecCAN protocol adds additional overhead for communication. From figure 7, it can be seen that the end-
to-end delay is 6.8 ms. Since in our prototype testbed we have used ECU chips and wires that are used by 
manufacturers in real vehicles, SecCAN performance overserved on the testbed should be comparable to real 
vehicles. Also, our experiments show that the end-to-end message delay is less than the minimum requirements 
of real-time constraints of CAN (Tindell et al. 1995). The data about message delays in real vehicles were not 
available at the time of writing the paper (as these data are manufacturer specific and is not available publicly). 
Due to the unavailability of data, we couldn’t compare our experimental results with real systems. 

6. Conclusion and future work 

We have presented a discussion on the existing research work in securing CAN with a focus on how they are 
violating the practical constraints to be adopted by the current automobile industry. We have presented a secure 
CAN protocol called SecCAN. The basic principles of SecCAN are segmentation-based message authentication 
codes and encryption using shared group keys. The evaluation of our proposed scheme using the BUSMASTER 
simulator and a real ECU-based testbed indicate that it can effectively prevent masquerade and replay attacks. 
The main advantage of our proposed scheme is that it can be easily adopted in a vehicle by reflashing the ECUs 
without changing any hardware. Also, our proposed scheme does not violate hard real-time deadlines required 
by CAN and it does not change the CAN packet format. However, our proposed scheme does not address DoS 
attacks, nor does it detect malicious software updates. However, we believe that our proposed scheme is a step 
in the right direction. Our future plans include developing a protocol with additional hardware that can 
effectively prevent DoS attack and software modification attacks in addition to masquerade attacks, replay 
attacks and snooping. 

References 

Bosch, R. (1991). CAN specification version 2.0. Stuttgart. 
BUSMASTER. (2016) BUSMASTER [Online]. Available at https://rbei-etas.github.io/busmaster/ [Accessed 25 Sept 2020]. 
Chavez, M.L., Rosete, C.H. and Henriquez, F.R., 2005, February. Achieving confidentiality security service for can. In 15th 

International Conference on Electronics, Communications and Computers (CONIELECOMP'05) (pp. 166-170). IEEE.  
Dagan, T. and Wool, A., 2016. Parrot, a software-only anti-spoofing defense system for the CAN bus. ESCAR EUROPE, p.34. 
Greenberg, A., 2015. Hackers remotely kill a jeep on the highway—with me in it. Wired, 7, p.21. 
Groll, A. and Ruland, C., 2009, June. Secure and authentic communication on existing in-vehicle networks. In 2009 IEEE 

Intelligent Vehicles Symposium (pp. 1093-1097). IEEE. 
Groza, B., Murvay, S., Van Herrewege, A. and Verbauwhede, I., 2012, December. Libra-can: a lightweight broadcast 

authentication protocol for controller area networks. In International Conference on Cryptology and Network 
Security (pp. 185-200). Springer, Berlin, Heidelberg. 

Groza, B. and Murvay, S., 2013. Efficient protocols for secure broadcast in controller area networks. IEEE Transactions on 
Industrial Informatics, 9(4), pp.2034-2042. 

371



 
Mohammad Arman Ullah et al. 

 
Hamada, Y., Inoue, M., Horihata, S. and Kamemura, A., 2016, November. Intrusion detection by density estimation of 

reception cycle periods for in-vehicle networks: A proposal. In 14th Int. Conf. on Embedded Security in Cars (ESCAR 
2016), Munich, Germany. 

Han, K., Weimerskirch, A. and Shin, K.G., 2015. A practical solution to achieve real-time performance in the automotive 
network by randomizing frame identifier. Proc. Eur. Embedded Secur. Cars (ESCAR), pp.13-29. 

Hoppe, T., Kiltz, S. and Dittmann, J. (2008). Security threats to automotive CAN networks–practical examples and selected 
short-term countermeasures. Computer Safety, Reliability, and Security, Springer, pp.235–248. 

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H. 
and Savage, S., 2010, May. Experimental security analysis of a modern automobile. In 2010 IEEE Symposium on 
Security and Privacy (pp. 447-462). IEEE. 

Krawczyk, H., Canetti, R. and Bellare, M. (1997). HMAC: Keyed-hashing for message authentication. 
Kubota, T., Shiozaki, M. and Fujino, T., 2016. Proposal and Implementation of Key Exchange Protocol suitable for In-Vehicle 

Network based on Symmetric Key Cipher using PUF as Key Storage. In escarEU2016. 
Larson, Ulf E, Nilsson, D.K. and Jonsson, E. (2008). An approach to specification-based attack detection for in-vehicle 

networks. In: IEEE. pp.220–225. 
Lin, C.-W. and Sangiovanni-Vincentelli, A. (2012). Cyber-security for the controller area network (CAN) communication 

protocol. In: IEEE. pp.1–7. 
MPLAB. (2018). MPLAB [Online]. Available at http://www.microchip.com/mplab/mplab-x-ide [Accessed 27 Sept 2020] 
Müter, M. and Asaj, N. (2011). Entropy-based anomaly detection for in-vehicle networks. In: IEEE. pp.1110–1115. 
Nilsson, D.K., Larson, Ulf E and Jonsson, E. (2008). Efficient in-vehicle delayed data authentication based on compound 

message authentication codes. In: IEEE. pp.1–5. 
Oguma, H., Yoshioka, A., Nishikawa, M., Shigetomi, R., Otsuka, A. and Imai, H. (2008). New attestation based security 

architecture for in-vehicle communication. In: IEEE. pp.1–6. 
Ryo, K., Takada, H., Mizutani, omohiro, Ueda, H. and Horihata, S. (2015). SecGW - secure gateway for in-vehicle 

networks[22] Szilagyi, C. and Koopman, P. (2009). Flexible multicast authentication for time-triggered embedded 
control network applications. In: IEEE. pp.165–174. 

Szilagyi, C. and Koopman, P. (2010). Low cost multicast authentication via validity voting in time-triggered embedded 
control networks. In: ACM. p.10. 

Tindell, K., Burns, A. and Wellings, A. (1995). Calculating controller area network (CAN) message response times. Elsevier, 
pp.29–34. 

Ujiie, Y., Kishikawa, T., Haga, T., Matsushima, H., Wakabayashi, T., Tanabe, M., Kitamura, Y. and Anzai, J. (2016). A method 
for disabling malicious CAN messages by using a CMI-ECU. SAE Technical Paper. 

Van Herrewege, A., Singelee, D. and Verbauwhede, I., 2011, November. CANAuth-a simple, backward compatible broadcast 
authentication protocol for CAN bus. In ECRYPT Workshop on Lightweight Cryptography (Vol. 2011, p. 20). 

Woo, S., Jo, H.J. and Lee, D.H. (2015). A practical wireless attack on the connected car and security protocol for in-vehicle 
CAN. IEEE Transactions on Intelligent Transportation Systems, 16, pp.993–1006. 

372

http://www.microchip.com/mplab/mplab-x-ide


xii 

Chuck Easttom is the author of 30 books and 70 papers, and  22  patents.  He holds a D.Sc,  Ph.D. , and  master’s degrees.  
He is a Distinguished Speaker of the ACM, Distinguished Visitor of the IEEE, as well as a Senior Member of the ACM and the 
IEEE. He is an adjunct lecturer for Georgetown University 

Éric Filiol is professor at ENSIBS, Vannes, France and at National Research University Higher School of Economics, Moscow, 
Russia in the field of information and systems security. He is also a senior consultant in cyber security and intelligence. He is 
editor-in-chief of the research journal in Computer Virology and Hacking Techniques published by Springer.  

Ryan Gabrys is a scientist with the Naval Information Warfare Center Pacific. His research interests include coding theory 
with applications to systems, storage and security. 

Dr Sheikh Ghafoor is a professor of Computer Science at Tennessee Tech University.  His main area of research is High 
Performance Computing, Cyber Physical, System Security, Computational Earth Science, and Computer Science Education. 
His research in these areas has been funded by NSF, NASA, DoD, and DoE. 

Dr. Scott Graham is an Associate Professor of Computer Engineering at the Air Force Institute of Technology, USA. His 
research interests center on cyber physical systems, computer architecture, networks, and security for critical infrastructure 
protection.  

Prof. Greiman is an Assistant Professor at Boston University, where she teaches and conducts research in international law 
and global cyber law and governance. She formerly served in high level appointments at the U.S. Department of Justice and 
as legal adviser to the U.S. Department of State and USAID in Eastern and Central Europe, Africa and Southeast Asia. 

George Grispos is an Assistant Professor of Cybersecurity in the School of Interdisciplinary Informatics at the University of 
Nebraska at Omaha. He obtained his PhD in Computing Science from the University of Glasgow, Scotland. His research 
interests include digital forensics, security incident response, information assurance, and applied computing science.  

Dr. Thomas Heverin is a cybersecurity teaching professor for Drexel University. He holds a Ph.D. focused on cybersecurity 
and the CISSP. He has conducted research on cyber threats on industrial control systems and leads the CyberCorps program 
at Drexel. He also served in the U.S. Navy as a ship officer.  

Michael Bennett Hotchkiss is an independent researcher with interests in the psychology of influence, criminology, and 
nation-state disinformation; especially in the context of Russian active measures. Michael earned a Master of Organization 
Development from Bowling Green State University; and a Bachelor of Arts in Psychology from the University of Connecticut, 
graduating Phi Beta Kappa. 

Eduardo Arthur Izycki International Relations M.A. Student at the University of Brasília (UnB) and public servant. Eduardo 
Izycki worked on developing solutions for risk assessments in the cycle of major events in Brazil (2012/2016). He currently 
works in the Critical Infrastructure Protection Coordination of the Brazilian Institutional Security Office (GSI). 

William A. Johnson is a direct-admit PhD and Cyber Corps scholar at Tennessee Tech University.  His research areas include 
Remote Attestation for embedded devices, cryptographic solutions for emerging networks, and ethical hacking.  He received 
his bachelors from Tennessee Tech University in Computer engineering in 2018. 

Nida Kazi graduated with a Master of Information Systems from John Hopkins University, in August 2020 and received her 
Bachelor of Engineering in Computer Science from the University of Pune. Her research has been focused in the fields of 
Cybersecurity and Cryptography. She is an avid cook and voracious reader, and lives in Virginia with her best friends.  

Anne Kohnke, Ph.D. is an Associate Professor and the Principal Investigator for the Center of Academic Excellence in Cyber 
Defense (CAE-CD) at the University of Detroit Mercy. Dr. Kohnke’s research is focused in the area of cybersecurity, risk 
management, and cybercrime. She has recently coauthored six books and several peer-reviewed journal articles in this 
discipline. 

Daniel Koranek is a research computer scientist with the Air Force Research Laboratory. He holds a B.S. in computer science 
from Cedarville University and an M.S. in Cyber Operations from the Air Force Institute of Technology (AFIT), and is in 
doctorate studies at AFIT. Daniel’s research interests are in embedded systems security and machine intelligence. 

MSc Tiina Kovanen is a PhD student at the university of Jyväskylä. She is interested in various cyber security topics for 
different cyber-physical systems. Currently she is working towards her degree by studying possibilities and challenges related 
to ships’ remote pilotage environment, ePilotage. 



Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


