
Instruction of Introductory Programming Course using Multiple
Contexts

David W. Brown
Tennessee Technological University

Cookeville, Tennessee, USA
dwbrown@tntech.edu

Sheikh K. Ghafoor
Tennessee Technological University

Cookeville, Tennessee, USA
sghafoor@tntech.edu

Stephen Canfield
Tennessee Technological University

Cookeville, Tennessee, USA
scanfield@tntech.edu

ABSTRACT
This paper describes the experience of redesigning a traditional
CS1 programming course, utilizing traditional coding practices as
well as microcontroller units (MCU) based coding, to provide mul-
tiple programming environments. The objective of this redesign
is to improve the programming skills for engineering students by
1) providing them with program development experience in mul-
tiple contexts and 2) relating the initial programming experience
to the typical notion of engineering through significant hardware
experience. Typical CS1 courses are designed with an instructor
led lecture focusing on the introduction of specific computer skills
and languages while programming assignments and laboratories
help strengthen these skills in the students. For this remodeling,
in addition to the typical programming exercises, supplementary
MCU based lab exercises were used to provide an additional, dif-
ferent programming target for increased learning and highlighting
the complementary relationship between hardware and software.
The outcomes of this effort demonstrate that the addition of a MCU
to an introductory programming course can work as an effective
motivator, providing the students with a secondary context to re-
inforce programming skills developed during the course, and that
providing multiple contexts (traditional desktop programming and
hardware-based programming) together can aid in learning and the
transfer of knowledge.

CCS CONCEPTS
• Social and professional topics→ CS1; Computer engineer-
ing education; • Hardware → Integrated circuits; Printed circuit
boards;

KEYWORDS
Microcontroller, Multiple Contexts, Knowledge Transfer, Introduc-
tory Programming

ACM Reference Format:
David W. Brown, Sheikh K. Ghafoor, and Stephen Canfield. 2018. Instruc-
tion of Introductory Programming Course using Multiple Contexts. In Pro-
ceedings of 23rd Annual ACM Conference on Innovation and Technology in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5707-4/18/07. . . $15.00
https://doi.org/10.1145/3197091.3197105

Computer Science Education (ITiCSE’18). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3197091.3197105

1 INTRODUCTION
Numerous research studies have established that learning intro-
ductory computer programming is difficult for incoming fresh-
men [3, 16]. Combine what is traditionally a difficult course, with
a section of students who do not comprehend why the subject is
required in their discipline and the course becomes much more
problematic. The traditional entry-level programming course for
engineers is based on learning programming using C/C++, Java,
FORTRAN or Matlab to solve numerical algorithms associated with
common engineering models. Any use of a computer as a device to
control physical events is generally reserved for upper level courses.
While creating programs to solve numerical analysis problems is
an important tool for engineers, we argue that the current model is
inverted for engineering students on a pedagogical basis. Ideally,
students would begin learning programming in an environment
that would match the notion of what engineers do, namely that
they design systems that control the world around them, and then
later move to solving advanced models that describe how the world
works. The majority of the population has a belief that engineers
‘build things’ and that makes it harder to comprehend why some-
thing they cannot touch is important [15]. In school, we teach basic,
fundamental skillsets, and then ask the student to apply these skills
to solve problems with different data or in a different context in later
classes or as a member of the workforce. In our work we redesigned
a traditional CS1 class that supports the student’s mental model of
engineering. To accomplish this, we looked at providing more than
a single context for learning programming. Although others have
used similar departures from the standard instructional environ-
ment (e.g. MATLAB, exotic hardware, etc.), it has been a focus of
ours from the beginning to attempt to bridge the gap between mis-
conception and reality to tap into the engineering students’ natural
passion. While most of the existing research has involved moving
entirely to a different programming context, we chose to do this
by using the MCU as a secondary contextual device rather than as
the sole programming reference. In our redesigned course, students
are required to program a MCU to control hardware such as LEDs,
speakers, servo-motors, etc. in the lab portion of class in addition
to typical PC-based programming assignments. We believe that the
redesigned course provides a learning environment early in the
curriculum which still matches the students’ notion of engineering.
In addition, the course provides more than one context of learning
which we believe will aid in the better transfer and retention of
programming knowledge and skills.

147

https://doi.org/10.1145/3197091.3197105
https://doi.org/10.1145/3197091.3197105

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus D.W. Brown et al.

2 RELATEDWORKS
Improvements to the pedagogy of undergraduate engineering pro-
gramming instruction have attracted significant attention in litera-
ture to date. Since most engineering instruction in programming
skills takes place in the freshman year, it is natural that freshmen
are often the focus for research into instructional technique im-
provements [1, 2, 4]. Numerous research projects have been carried
out to investigate the use of robotics or MCU programming as a
means of teaching non-Computer Science majors Beginning with
Schumacher and Fagin’s work [8, 13] in implementing introduc-
tory computing courses using LEGO MindStorm and continuing
through the works of Xu and Panadero, [11, 17] there has been
a long history of replacing portions of a laboratory curriculum
with assignments based on robotics systems. In addition, a com-
mon theme has been the use of non-traditional programming as-
signments such as spreadsheets [5], MATLAB [12] or flowchart
applications [6] in place of languages such as Python, C or C++.
It is only recently that studies have tried using simpler MCUs in
these environments [9, 14]. One aspect of engineering learning that
seems to have received little attention is the impact of students’
(especially freshmen) misconceptions about what engineering is,
and the sort of work that is done by engineers on a daily basis [7]. In
addition, research shows that an issue exists of motivating students
who feel that programming is a chore or a skill they are not likely
to use in their chosen careers [15]. Quite often this introductory
programming course represents these students first exposure to
engineering which further alienates the students from what they
believe engineers actually work on. Often, this misunderstanding
is fed by a misconception held by society in general [10].

3 COURSE DESCRIPTION
Our course is designed as a traditional, semester-long, four credit
hour CS1 course, with a three-hour lecture component and a one
hour lab. As this is a course for engineers, the primary language
used for programming in the class is C++. The lectures follow a tra-
ditional CS1 syllabus with lectures, weekly quizzes, programming
assignments, and tests. Table 1 shows the topics covered during
the lecture portion of the class. In both the lecture and for portions
of the lab, the target for programming examples and assignments
is the traditional desktop PC. However, each lab assignment also
includes an assignment that mirrors the main topic being covered
but are designed for the MCU. This MCU programming provides
an additional context that is appropriate for the demonstration of
engineering practice.

Our university is a medium sized, accredited public engineering
university with an enrollment of approximately twelve thousand
students. The college of engineering is the largest school on campus
with an enrollment of over three thousand students. The freshmen
students in Electrical Engineering, Computer Engineering, Com-
puter Science, Mechatronics and Manufacturing Engineering Tech-
nology are required to take CS1 as part of their curriculum. This CS1
course is taught by the Computer Science Department regardless of
the student’s individual major. No prior programming experience is
required to take this course, and in fact, most of the students do not
have prior experience. The enrollment for this class has continued
to grow over the past 10 years and now every semester more than

Table 1: Course Topics

Topic Num Topic
1 Programming Design Process
2 Variables, Data Types and Math Expressions
3 Input and Output
4 Conditional Statements (if, if/else, switch)
5 Looping (for, while, do...while)
6 User Defined Functions
7 Arrays (one and multi-dimensional)
8 Pointers
9 Structures
10 Debugging and Error Correction

two hundred students take this course. The course is divided into
two lecture sections and six to seven lab sections, consisting of 25-
30 students. The redesigned class was implemented in two phases.
The first phase was implemented during the 2011-2012 academic
year. During that time, additional sections of lecture were taught
providing a lecture and lab class size of approximately 30 students.
The second phase has been started in fall 2015 and is continuing.

3.1 Course Hardware
A primary distinguishing feature of this course is that it provides a
hardware-based context, in addition to a PC context, as the initial
programming target for the lab portion of the class. In the first
phase, the MCU in question was a Dragon12 Plus board. This board
was chosen for the initial evaluation period for several reasons.
At the time, it was the board used for upper division mechatron-
ics, embedded systems courses, as well as for many senior level
design projects in the electrical and Computer Engineering depart-
ment. The second reason for choosing the Dragon12 board was that
project was funded by National Science foundation and the grant
proposal which funded the first phase of this research was written
for a redesign effort with this board. The boards in question were
supplied to the students for the duration of the class, then returned
to the department for use in subsequent semesters. In the second
phase, the Dragon12 board was replaced with an Arduino-based
board designed for introductory circuitry courses (Figure 1). Sev-
eral reasons existed for us to undertake this change. Primarily, the
difference was a cost improvement between the Arduino boards
and the Dragon12 board. The difference is understandable when
considering the differences between the two boards, the Dragon12
board is a complete fully functioning MCU while Arduino boards
are cheaper but more expandable through add-on components. This
cost savings further allows the department to provide a board to
the students that they are able to keep, promoting experimentation
after the class is completed. A secondary consideration is a move-
ment on the part of the Electrical Engineering department away
from the Dragon boards in their senior level coursework. The cost
of the board is approximately 60 USD, which most of the students
are willing to pay since the cost works out to be less than the cost
of one standard textbook. The hardware setup for the second phase
our experiment was an integrated Arduino MCU which contained
an integrated temperature sensor, three separate potentiometers,

148

Instruction of Introductory Programming Course using Multiple Contexts ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

Figure 1: Arduino MCU Board

5 user controllable buttons to provide input, a 16 by 2-character
LCD display for text output, light sensors, a piezoelectric speaker,
a digital to analog converter, and the ability to transfer information
from a computer to the card through either USB support or a micro
SD card. Combined, these features allowed us to develop a wide
variety of challenging laboratory exercises for the students, while
also providing them enough features to encourage their continued
experimentation. Changes to the MCU also required a change in
the software environment the students used to program the labo-
ratory assignments. While using the Dragon boards, the Freescale
CodeWarrior cross compiler, which comes with an Integrated Devel-
opment Environment (IDE), was used to allow students to compile
a C/C++ program on their desktop and download the executable
to the target Dragon 12 board through the USB connector in a sin-
gle step. With the change to the Arduino, the standard Arduino
Integrated Development Environment (IDE), was used to compile a
C/C++ program on their desktop and download the executable to
the target MCU through the USB connector in a single step. While
the syntax for using this editor is C++-like and it allows the same
functionality, some of the standard input and output functions are
slightly different. As a result, rather than worrying about the low-
level details of the hardware, students are able to spend more time
in analyzing the problem and developing programs for the hands
on activities.

3.2 Laboratory Assignments
Portions of weekly lab assignments (over a 14 week semester) based
on the MCU were given to the students. Face to face instructor/TA
contact time for the lab was 1.5 hours, however, if the student
was unable to finish the assignment during this time, they could
continue work on their own, for a period of 3 to 4 days. For the
hardware portions of lab, students were able to work directly on the
MCU boards, which were issued at the beginning of the semester.
Table 2 gives examples of the lab assignments correlated with the
programming constructs which were the learning objectives for
each of the labs. The first lab involved student familiarization with
the MCU as well as downloading and setup of the Arduino IDE
and executing a simple "Hello World" type program on the MCU.

Each lab activity was assigned along with a problem statement and
a required set of deliverables. To fully complete each assignment,
the student was required to implement their programmed device
in a setting outside of the classroom or lab. An exact description of
sample labs are presented below

3.2.1 Laboratory Assignment - Speed Game. This lab acts as
the fifth lab involving the Arduino and involves making a simple
speed game. The primary programming concepts the lab highlights
are the use of loops to repeat code and conditional statements
to control input and output. To accomplish this, the users build
a simple speed game to be played by two people. The students
program the piezoelectric speaker to sound and flash the LED lights
to signify that a game is about to start. After this signal is given, a
break of a random time between 1 and 10 seconds is taken. After
the break, one of the LED lights flashes on until one of the two
user buttons is pressed. The person who presses their button first
is declared the winner. A tone sounds on the piezo speaker and
the LED lights will flash for 100 milliseconds. In addition, the LCD
display will show a message indicating that the game is over and
indicating which player won. After a 4 second delay, the game is
designed to be restarted. Loops control the delays, lighting of the
different LCD and LED components and restarting the game, while
conditional statements allow the game to indicate winner for each
round. The students are encouraged to add their own touches to
the game with a suggestion of keeping track of the number of wins
for each player.

3.2.2 Laboratory Assignment - Lock Box. This lab acts as the
tenth lab involving the Arduino and involves making a locking
mechanism suitable for a safe. The primary programming concepts
the lab highlights are the use of arrays to store related data, func-
tions to create modular code, loops to allow repeated use of the
same code and conditional statements to control input and output.
To accomplish this lab, the students must code a number of func-
tions including one for getting the original lock box password, one
to check if a supplied code matches the original, a third for present-
ing a ’locked state’ to the user and finally a function to handle what
occurs if an incorrect password is entered. The initial user password
is stored in an array and is made up of presses made to any of the
five built in buttons present on the MCU. Once this password is
entered, the MCU is considered locked and waits for a second user
to attempt to unlock it. The MCU will stay locked until the correct
sequence of buttons is entered which will call the unlock function.
Once again, students are given the freedom to control what occurs
when an incorrect, or correct, passcode is given using any of the
components present on the MCU.

4 EVALUATION
In the first phase of our experiment, which occurred during the
2011–2012 academic year, students signed up for sections in the
normal fashion, with all sections containing both CS and non-CS
engineering students. During each semester, a single section of
class consisting of 30 students was selected at random to act as an
intervention group while a second was chosen as a control. The
intervention section performed labs that were entirely based on
Dragon12 boards while the control lab, though taught by the same

149

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus D.W. Brown et al.

Table 2: Lab Exercises by Programming Construct

Concept Task Description
Input/Output Students learn how to use a micro-

controller to interact, through but-
tons, analog inputs and LED dis-
plays

Using potentiometers and the built in ADC on the Arduino
students cause LED lights and piezo speakers to "blink" as input
is modified.

Conditional Logic Using if statements the students will
control lighting of LEDs based on
button presses

The order in which built in buttons are pressed is used to deter-
mine if and when built in LEDs light up.

Loops Control on and off blinking of LED
lights based on user input

LED lights are set to blink in successive order until a button is
pressed which causes all three buttons to blink simultaneously
until the button is released.

Nested Loops Using multiple LED’s a display and
a temperature sensor we simulate
an air conditioning sensor

One light is set as heating, the other as cooling. The display
indicates the currently observed temperature which can then
be manipulated through the user touching a sensor.

Arrays Simulate locking and unlocking a
safe

Prompt for a passcode to lock; turn motor to simulate locking.
Ask for passcode to unlock; compare with saved passcode and
simulate unlocking by turning motor if passcode is correct.

Structures Create music box Store individual notes as a structure of a pitch and duration.
Then store an array of notes as a song that can be played through
a built in piezoelectric speaker

Figure 2: Preliminary Experiment Results 2011–12

professors, used standard PC-based laboratory assignments. The fi-
nal course grade containing the weighted average of quizzes, exams,
programming assignments and laboratory assignments has been
selected as the assessment indicator. As we can see, a much larger
percentage of students were able to receive an A for the course from
the intervention group during both the fall and spring semesters.
(Figure 2). We can also see from the figure that the average ACT,
or American College Testing, scores for both the intervention and
control sections were equal. The ACT is an independent, standard-
ized math, language, science, and reasoning test used for university
admissions, and the scores would indicate that the two groups’
background preparation for the class would be roughly equivalent.
In addition, for the two semesters, the GPA for all students was no-
ticeably higher, 2.93 in the intervention sections compared to 2.56 in
the control sections (Figure 3). After examining the results from the
first part of the trial, we felt the initial findings were promising but

Figure 3: GPA Across Experiment

we also felt that the work needed to be more focused on the Elec-
trical and Computer Engineering students for two reasons: 1) The
faculty and leadership of the ECE Department wanted all EE and
CE students to take an MCU-based CS1 class, because qualitatively
they observed that ECE students who had taken the MCU course
during phase 1 were move confident and were performing better
in upper division MCU-based Mechatronics, or embedded systems
classes compared to student who had not taken the MCU-based
class. 2) There was criticism of the course from Computer Science
students who did not want to take an MCU-based CS1 class stating
that hardware was not part of their core curriculum. 3) It was a prob-
lem financially for the Computer Science department to purchase
MCU boards for the CS students, while the ECE department was
willing to invest in hardware for their students. With these changes
in mind, we were able to work with leadership in the academic
departments and the School of Engineering to create laboratory

150

Instruction of Introductory Programming Course using Multiple Contexts ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

Figure 4: Grade Distribution Labs Without MCU

Figure 5: Grade Distribution Labs With MCU

sections that contained only non-Computer Science, mostly ECE,
students. The lecture sections would continue to be mixed but all
non-Computer Science students would be required to take specific
lab sections. Since there was no control group for non-CS Engi-
neering students in the second phase of our study, we have used
grades of non-Computer Science students in the three semesters
prior to the start of the second phase as our control group. Here we
would like to mention that prior labs were of similar difficulty level
as the labs constructed for these new sections. Figure 4 shows the
percentage of each grade achieved by the control group in courses
taught by one of the authors. A secondary development occurred as
we were beginning phase two. Until 2016, lecture and lab sections
had been limited in size to approximately 35 students. Beginning in
the spring semester of that year, the lecture size was increased to
100 students, while multiple 30-35 student lab sections were held.
This change in class structure meant that a larger portion of the
one on one interaction would occur during labs, increasing their
importance. Despite this change, to class size, students in the MCU
based labs showed marked improvement (Figure 5) compared to
the control group. In addition to the individual grade increases, as
Figure 3 shows, the phase 2 GPA for the intervention group of 2.43,
while not as high as those seen for phase 1 are still much higher
than the 2.01 observed in the control group. Furthermore, anecdotal
evidence in the form of feedback from the electrical and Computer
Engineering department faculty indicate that they believe students

in the intervention group are better prepared to succeed in the
department after successful completion of the course.

5 LESSONS LEARNED
During the two-phase MCU-based CS1 redesign and implementa-
tion effort we have faced several challenges and learned the follow-
ing lessons:

• Teaching CS1 to engineering students using MCU’s in addi-
tion to traditional PC-based exercises is a viable model.

• During our first phase implementation and the first semes-
ter of our second phase implementation, students had to
build some circuitry using wires, breadboards, and different
sensors. Frequently because of a loose connection or due to
incorrect wiring the program would not work as expected.
This may become frustrating for students, especially as they
are learning new material. From spring 2016, we have used a
specialized Arduino board from a local vendor that contains
all integrated circuitry. This has eliminated all circuitry or
loose wiring related errors and frustrations.

• Additional work on the part of the professor may be neces-
sary to effectively teach this course. The professor may need
to learn at least some basics of electric circuitry. These extra
responsibilities may require some additional motivation for
traditional Computer Science professors.

• Extra lab support may need to be available to help students in
these sections compared to traditional courses. As students
start working in a MCU environment, they may initially
grow frustrated. In our experience, this is more prevalent in
sections using non-integrated circuitry where a misplaced
wire can be the cause of errors rather than incorrect code.
An additional aide in the course is therefore valuable to aid
in encouraging the students and correcting these issues as
soon as possible.

• Lab assistants or TAs should be either knowledgeable or
have a knack or an interest in learning circuitry.

6 CONCLUSION
This paper has presented a model for the restructuring of the tra-
ditional CS1 Introduction to Programming course by adding a
hardware-based lab component. The underlying pedagogical foun-
dations of this activity are 1) to engage incoming students’ notions
of engineering and to build on this early knowledge in a progressive
fashion with programming applications that are relevant to engi-
neering and 2) to provide a hardware-based programming context
in addition to traditional PC environment. The assignments are
designed around the objectives of building on existing students’
knowledge, enhancing knowledge transfer, and enabling students
to take more control of their learning process. This redesigned
programming course was implemented several times with a mix-
ture of Electrical Engineering, Computer Engineering, Computer
Science, Mechatronics and Manufacturing Engineering Technol-
ogy students over multiple semesters. Assessments of the project
provide a strong indication that the students engaged in the hands-
on, hardware-based programming activities performed better their
comparison group peers who were exposed only a single context
using traditional PC assignments. Comments from the faculty of

151

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus D.W. Brown et al.

the electrical and Computer Engineering department show that stu-
dents in the intervention group are believed to be better prepared to
succeed in the major after successfully completing the multiple con-
text course. In conclusion, we contend that the results imply that
the hands-on programming model provides increased engagement
and builds on incoming notions of programming in engineering
that result in better learning. The increased engagement appears to
be due to the hardware based activities, while the better learning
may in part stem from 1) increased engagement, 2) building on an
existing framework of knowledge, and 3) exposure to programming
in multiple contexts (both MCU hardware and desktop PCs).

ACKNOWLEDGMENTS
Portions of this research were funded by an NSF grant, DUE1044590.

REFERENCES
[1] Victor Adamchik and Ananda Gunawardena. 2005. Adaptive book: Teaching and

learning environment for programming education. In Information Technology:
Coding and Computing, 2005. ITCC 2005. International Conference on, Vol. 1. IEEE,
488–492.

[2] John E Bean and John P Dempsey. 2007. Collaboration between Engineering
Departments at Clarkson University for a Freshman-Level Engineering Program-
ming Course Including an Experimental Lab Experience. In CIEC 2007 Conference,
4p.

[3] Jens Bennedsen and Michael E Caspersen. 2007. Failure rates in introductory
programming. AcM SIGcSE Bulletin 39, 2 (2007), 32–36.

[4] David E Clough, Steven C Chapra, and Gary S Huvard. 2001. A change in
approach to engineering computing for freshmen–similar directions at three
dissimilar institutions. age 6 (2001), 1.

[5] Mauricio A Colombo, María Rosa Hernández, and Jorge E Gatica. 2000. Combin-
ing high-level programming languages and spreadsheets an alternative route for

teaching process synthesis and design. age 5 (2000), 2.
[6] Thomas J Cortina. 2007. An introduction to computer science for non-majors

using principles of computation. In ACM SIGCSE Bulletin, Vol. 39. ACM, 218–222.
[7] Michael Davis. 1998. Thinking like an engineer: Studies in the ethics of a profes-

sion. (1998).
[8] Barry S Fagin, Laurence D Merkle, and Thomas W Eggers. 2001. Teaching

computer science with robotics using Ada/Mindstorms 2.0. In ACM SIGAda Ada
Letters, Vol. 21. ACM, 73–78.

[9] Mark Goadrich. 2014. Incorporating tangible computing devices into CS1. Journal
of Computing Sciences in Colleges 29, 5 (2014), 23–31.

[10] Louis S Nadelson and Janet Callahan. 2011. A comparison of two engineering
outreach programs for adolescents. Journal of STEM Education: Innovations and
Research 12, 1/2 (2011), 43.

[11] Carmen Fernández Panadero, Julio Villena Román, and Carlos Delgado Kloos.
2010. Impact of learning experiences using LEGO Mindstorms® in engineering
courses. In Education Engineering (EDUCON), 2010 IEEE. IEEE, 503–512.

[12] Julián Ramos, María A Trenas, Eladio Gutiérrez, and Sergio Romero. 2013. E-
assessment of Matlab assignments in Moodle: Application to an introductory
programming course for engineers. Computer Applications in Engineering Educa-
tion 21, 4 (2013), 728–736.

[13] Jerry Schumacher, Don Welch, and David Raymond. 2001. Teaching introductory
programming, problem solving and information technology with robots at West
Point. In Frontiers in Education Conference, 2001. 31st Annual, Vol. 2. IEEE, F1B–2.

[14] Hugh Smith. [n. d.]. Microcontroller Based Introduction to Computer Engineering.
([n. d.]).

[15] Lynda Thomas, Mark Ratcliffe, John Woodbury, and Emma Jarman. 2002. Learn-
ing styles and performance in the introductory programming sequence. In ACM
SIGCSE Bulletin, Vol. 34. ACM, 33–37.

[16] Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation &
technology in computer science education. ACM, 39–44.

[17] Dianna Xu, Douglas Blank, and Deepak Kumar. 2008. Games, robots, and ro-
bot games: complementary contexts for introductory computing education. In
Proceedings of the 3rd international conference on Game development in computer
science education. ACM, 66–70.

152

	Abstract
	1 Introduction
	2 Related Works
	3 Course Description
	3.1 Course Hardware
	3.2 Laboratory Assignments

	4 Evaluation
	5 Lessons Learned
	6 Conclusion
	Acknowledgments
	References

