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Abstract— Convolutional Neural Networks are currently
being used widely because they show competitive perfor-
mance in several problem domains such as image detec-
tion, natural language understanding and signal processing.
However, a complicated and cache inefficient CNN architec-
ture might show good accuracy but typically requires long
processing time and a larger volume of main memory. In this
paper, we develop a greedy algorithm with flexible selection
that efficiently tunes several hyper-parameters particularly
the number of filters for a particular convolutional layer and
the number of convolutional layers. Thus, our approach finds
a CNN architecture by minimal exploitation of computing
resources and time for any particular image classification
problem. The important aspect of the algorithm is that it can
find different well-tuned solution to different image datasets.
The proposed CNN architectures generated by the algorithm
show competitive performance in several areas of image
recognition. We compare our Flexible-greedy approach with
a Brute-force parameter tuning technique and find that
our approach takes much less time finding well-tuned CNN
architecture compared to Brute-force technique. In the case
of finding minimal number of trainable parameters, our
approach is also competitive with the general Brute-force
methods.
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1. Introduction
At the time when CNN was introduced in the paper [1],

the computing power was not sufficient to run a deep archi-
tecture of the network. When the LeNet-5 was developed, it
had very few layers including only three convolutional layers
[2]. A comparatively larger CNN architecture was AlexNet
[3] that consists of eight layers including five convolutional
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layers. After AlexNet, Machine Learning researchers found
that network depth plays crucial role in improving accuracy
for image recognition problems [4], [5]. Moreover, they ob-
served that building a deeper model with ReLU activation is
comparatively less expensive compared to previous networks
where sigmoid and tanh were commonly used as activation
units. As a result, they started to build very deep models in
several problem domains particularly in image classification
and object detection problems. Such deep models [6], [7],
[8] showed improved accuracies in image classification
but suffer from having very large parameter sets to tune.
GoogleNet [9] introduced “Inception module” in their deep
network. This change helps reduce the number of parameters
and can be used to build very deep CNNs. This technique
was applied in the ILSVRC 2014 classification and detection
challenges where their solution surpassed other state-of-the-
art techniques. Another important obstacle that the deep net-
works suffer from is vanishing gradient [10]. This problem
increases as the network grows and hinders the network from
convergence. The probable solution to address this problem
involves normalized initialization [8] and batch normaliza-
tion (BN) techniques [8]. BN helps to reduce the impact of
previous layers by keeping fixed mean and variance. This
results in the intermediate layers being independent from
each other and convergence becomes comparatively faster.
As described in [11], when the depth of a network increases,
accuracy gets saturated and after that the accuracy starts to
degrade rapidly. The paper suggests that the problem is not
caused by overfitting. This issue arises when more layers
are added to a suitably deep model. He et al. solve the
degradation problem by adding identity mapping technique
[11]. Their solution network gives fewer training errors
compared to it’s shallower counterpart. A recent paper [12]
published in 2017 talks about a different type of CNN
architecture named DenseNets, which connects each layer
to every other layers in a feed-forward fashion. The paper
claims that DenseNets reduces the vanishing-gradient prob-
lem, strengthen feature propagation and reduces number of
parameters significantly. All the popular CNN architectures
including LeNet [2], AlexNet [3], VggNet [6], GoogLeNet
[9], ResNet [11] and DenseNets [12] are developed using
hand-crafted tuning. Tuning a CNN architecture such as
finding optimal number of filters for convolution layers for
a particular image recognition problem is cumbersome and



resource intensive. We aim to develop an algorithm that
searches for the best possible filter size for any convolution
phase. Our algorithm also finds a suitable depth for the CNN
at which point it shows better accuracy.

2. Related Work
Finding an optimal CNN architecture for a particular

image classification problem is a NP-hard problem. No
fruitful research has been conducted yet to find an optimal
CNN architecture automatically for any image classification
problem. Recent development of CNN architectures [9],
[11], [12], [13], [14], [5], [15], [16] improves accuracy
of computer vision problem by adding more convolutional
layers, but all these works needed to put huge effort in
finding out a suitable maximum bound of intermediate lay-
ers. Furthermore, all these popular networks required careful
examination regarding the number of filters for intermediate
convolutional layers to reduce overfitting. Thus, tuning the
hyper-parameters of filter size and number of convolutional
layer becomes an important job. Presently, CNN networks
have also started to incorporate dropout [17] and batch nor-
malization [8] techniques to reduce variance in the network.
These techniques add some more hyper-parameters with
the CNN’s default hyper-parameters. Therefore, it becomes
difficult to tune all the hyper-parameters in respect to time
and resource if a commonly used greedy approach is applied.
Our paper aims to describe a flexible greedy approach to
find well-tuned number of filters for a convolutional layer
and the total number of convolutional layers that best suit
to a particular image classification problem.

3. FAWCA Overview
The FAWCA approach we present here can automatically

select an approximately optimal number of filters for a
particular convolutional (conv) layer. In a generic CNN
algorithm, as we increase the number of filters in a conv
layer, the complexity is supposed to improve. That means
the network can capture more non-linearity in the data.
However, increasing filter count likely increases variance
in the network. As a result, the network starts over-fitting
for a undiscovered or test dataset. To find well-tuned CNN
architectures, FAWCA applies two loops in its algorithm
that searches for the best choices. The outer loop finds the
number of layers whereas the inner loop finds the number
of filters for a conv layer. The inner loop starts with a given
initial number of filters such as 16 or 32 and goes up-to
a certain multiplier of the initial filter count. In the inner
loop, the number of filters used in the current iteration is
the number of filters in the previous iteration incremented
by the size of initial filter.

Brute-force search explores all possible choices of filters
in a grid space shown in Figure 1. It starts to find well-
tuned filter for the first conv layer from a given minimum

Fig. 1: Brute-force approach to find well-tuned CNN archi-
tecture.

Fig. 2: FAWCA approach to find well-tuned CNN architec-
ture.

number of filters and checks all the way until it reaches a
given max number of filters. After finding well-tuned filter
for the first layer, it repeats the process until it finds a well-
tuned filter count for the second conv layer. The outer loop
breaks if the accuracy does not improve for any iteration
in previous layer before starting to find filters for a new
layer. On the other hand in FAWCA, in the inner loop,
it stores the current accuracy as the best accuracy if it is
greater than the previous iteration. Otherwise, it checks the
current accuracy with the accuracy found in the iteration
in two steps backward. Thus, unlike the hard greedy way
to stop the current loop, FAWCA checks two consecutive
iterations while finding well-tuned filter counts for a conv
layer. If both the consecutive iterations show a performance
drop compared to the previous best accuracy, the current
inner loop does not run further and enters to next outer
loop iteration. An example of FAWCA approach is shown in
Figure 2. The filters shown in red circle are the well-tuned
size of selected filters for each conv layer.

In pseudo-code 1, we present the Find_Sub_Opt_CNN
procedure of the FAWCA approach. The procedure consists
of two for loops. The outer loop iterates from layer 1



Algorithm 1 FAWCA Algorithm
1: procedure FIND_SUB_OPT_CNN(net_image, cur_img_dim, base_f,max_multip, conv_dropout_rate, dense_dropout_rate)
2: opt_acc← 0.0
3: l← 1
4: i← 0
5: flag ← 0
6: opt_i← 0
7: net← NULL
8: net_temp← NULL
9: opt_net← NULL

10: saved_opt_conv_net← net_image
11: saved_sub_conv_net← NULL
12: acc_list← set 0.0 to all the elements
13: for l ≤ L do
14: cur_img_dim← cur_img_dim/2
15: for f ∈ {base_f, 2 ∗ base_f . . . ,max_multip ∗ base_f} do
16: net_temp← Add a conv layer with filter size f to the saved_opt_conv_net network
17: if cur_img_dim ≥ min_img_dim then
18: net_temp← Add a MaxPool layer to the net_temp network

19: if conv_dropout_rate 6= 0.0 then
20: net_temp← Add Dropout with conv_dropout_rate to the net_temp network

21: net← Flatten the net_temp Network
22: net← Add Dense layer with dense_layer_units to the current network
23: if dense_dropout_rate 6= 0.0 then
24: net← Add Dropout with dense_dropout_rate to the current network

25: acc← Measure accuracy with cross validation for the current network
26: acc_list[i]← acc
27: if acc_list[i] > opt_acc then
28: opt_acc← acc_list[i]
29: opt_net← net
30: saved_sub_conv_net← net_temp
31: flag ← 1
32: opt_i← i
33: else
34: if i ≥ 2 then
35: if i ≥ opt_i+ 2 then
36: Break the inner for loop

37: i← i+ 1

38: if flag == 1 then
39: saved_opt_conv_net← saved_sub_conv_net
40: else
41: Break the outer for loop

42: return opt_net



through layer L. The inner loop selects the best count
size for a particular outer iteration. We use max pooling
after the convolutional layer if the current image dimension
is greater than a minimum dimension such as 6 × 6 or
8 × 8. The max pooling layer usually reduces the image
dimension to half resulted from a conv layer. Thus, we
restrict it by setting a variable of minimum image dimension
that limits the current image from downsizing further after
reaching that minimum dimension. The algorithm also has
the flexibility to use dropout technique both in the conv
layer and dense layer. When a particular image classi-
fication problem starts to show over-fitting on test data,
this dropout technique can reduce the network complexity
by dropping out some units from the conv layer or the
dense layer based on the parameters conv_dropout_rate
and dense_dropout_rate respectively. At this point, the
procedure measures accuracy for the current network us-
ing a k-fold cross-validation technique. The pseudo-code 2
presents a procedure Find_CV _Accuracy that calculates
the mean accuracy over the k-folds. As the original image
dataset might be very large, so in a particular iteration
over the k iterations, the procedure takes a sample dataset
from the original data by stratified sampling. The sample
dataset again gets split into training and test datasets by the
stratified sampling. Stratified sampling keeps same ratio of
the target classes in the sampled classes. Thus, it helps keep
homogeneity in the sample dataset if the original dataset
is unbalanced over classes. Finally, the procedure measures
mean value over the k accuracies.

Now, if this accuracy is greater than the previous best
accuracy, FAWCA replaces that accuracy with the current
accuracy. The previously stored best network configuration
is also replaced with the current network. On the other hand,
if the current accuracy does not improve more than the
previous best accuracy and the current iteration is two more
than the iteration for that best accuracy, then the algorithm
breaks the inner loop. This is how FAWCA allows two
more iterations after the iteration of previous best accuracy
for seeking improvement in the inner loop. On the other
hand, the Brute-force approach checks all possible filters
to find best number of conv filters in the inner loop. The
Brute-force pseudo-code is not shown in the paper, but
can be obtained by omitting line 33 through 36 from the
Find_Sub_Opt_CNN procedure.

4. Experimental Design
4.1 Data

We use two publicly available image datasets in our
experiment. The First dataset is CIFAR-10 that consists of
60, 000 color images in 10 different classes. Each class
contains 6000 images and the dimension of each image is
32 × 32. In this large dataset, number of training image
is 50, 000 and the remaining images are test dataset. The

second dataset we use is Fashion-MNIST that contains gray-
scale images. Number of training and test images in this
dataset are 60, 000 and 10, 000 respectively. This dataset is
very similar to the MNIST dataset where each image has
dimension 28×28 and consists images of 10 distinct fashion
type classes. Before fitting data into the network model we
divided the pixel value by 255 following [18] to get the pixel
value in [0, 1] range.

4.2 Machine Details
All the experiments are performed on a compute node

in a four-node cluster setup. The compute node consists
of two Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz
processors using NUMA architecture. The compute node
also has one NVidia K40 GPU card. The Keras [19] Deep
Learning python library with Tensorflow backend is used
in our experiment. The experiment uses the K40 GPU card
to leverage the streaming processors. For a particular image
dataset, the computation time is measured by summing the
time required to find a well-tuned CNN architecture and the
time required to fit the whole training data with the selected
well-tuned network.

5. Experimental Results and Analysis
In this section, we present an analysis of the time and

memory complexity of FAWCA approach with the Brute-
force technique. The comparison of well-tuned CNN archi-
tecture and classification results between FAWCA and Brute-
force are also described for both image datasets.

5.1 CIFAR-10
Before feeding CIFAR-10 data into FAWCA, we set

several hyper-parameters. To reduce over-fitting, we used
L2-regularization in conv and dense layers and set the weight
decay parameter to 0.001. Along with L2-regularization, we
use Dropout both in conv and dense layer and the percent-
age of Dropout rates are 20% and 40% respectively. We set
the maximum number of layers to 6 and started with 16 as
initial filter count. The filter dimension is set to 5×5 across
all the Conv layers and maximum multiplier for a single
Conv layer is set to 6. CNN is computationally expensive,
hence we used 4-fold cross validation with 40% stratified
sampling each time. Number of epoch and batch size are set
to 5 and 128 respectively. The algorithm has options to take
a completely different hyper-parameter setting.

Figure 3 shows the well-tuned CNN architectures gener-
ated by FAWCA and the Brute-force approaches. We observe
that to generate a well-tuned solution, FAWCA does not
necessarily explore more conv layers compared to Brute-
force method.

The performance result in Table 1 shows that FAWCA
requires 57.3% less computation time to find a well-tuned
solution for CIFAR-10 dataset. The total number of trainable
parameters require for FAWCA is 1.6 millions compared to



Algorithm 2 FAWCA Algorithm
procedure FIND_CV_ACCURACY(folds,X, y, batch_size, epoch)

2: for k ≤ folds do
tr_X ← Sample from X by stratified sampling

4: tr_y ← Sample from y by stratified sampling
split tr_X and tr_y into training and test datasets by stratified sampling

6: Fit a model using Adam optimizer, batch_size and epoch on the new training dataset
Measure accuracy on the new test dataset

8: cv_acc← Take mean over all the k accuracies
return cv_acc

Fig. 3: Well-tuned CNN architecture for CIFAR-10 dataset.
Left: This network is generated by FAWCA. Right: This CNN
is generated by Brute-force Approach.

2.4 millions for Brute-force approach. To store the parame-
ters thereby, FAWCA saves 49.6% memory than the Brute-
force. After generating the well-tuned CNN architecture by
both approaches, we trained those networks with full training
data. We measured accuracy on the 10, 000 test data using
the well-tuned trained models. The accuracies found for
FAWCA and Brute-force are 81.86% and 81.49% respec-
tively. This result shows that our FAWCA approach does
not compromise the accuracy but gives better performance
with respect to running time and number of parameters.

5.2 Fashion-MNIST
In case of Fashion-MNIST, the over-fitting problem is not

as high as with CIFAR-10, hence the weight decay parameter
is set to 0.0001. The number of folds, size of the base conv
filters, filter multiplier of a conv layer, Dropout rate and size
of batch are kept same as the case of CIFAR-10. As the size

Table 1: Performance of FAWCA compared to Brute-force
on CIFAR-10 dataset.

Performance measures FAWCA Brute-force
Running Time (min) 112.87 177.52
Trainable parameters (in mil) 1.6 2.4
parameters memory size (MB) 6.09 9.11
Accuracy on test data (%) 81.86 81.49

of the image in this data is smaller than CIFAR-10(28×28),
filter dimension is changed to 3× 3. The depth of the dense
layers and total number of conv layers hyper-parameters are
changed to 512 and 8 respectively. However, all the hyper-
parameters have the same value when applied to Brute-force
algorithm to find well-tuned solution. Figure 4 shows the
well-tuned solutions generated by FAWCA and the Brute-
force approaches. In Figure 4, the network in left image
by FAWCA only requires four conv layer to show better
accuracy compared to the right image by Brute-force that
explores all the eight conv layers to find optimal solutions.

We present a performance table 2 comparing several
measures between the FAWCA and Brute-force approaches.
FAWCA requires only 96.89 minutes to find a well-tuned
solution compared to 208.64 minutes for Brute-force. It
shows that FAWCA requires about 116% less time when
both the algorithm runs on K40 GPU card. Moreover, the
accuracies on test data for FAWCA and Brute-force are
93.41% and 92.76% respectively. Thus, FAWCA again re-
sults in higher accuracy for Fashion-MNIST dataset. Finding
well-tuned number of filters for two extra conv layers in
Brute-force approach adds more time than FAWCA. The
long architecture solution in Brute-force increases variance
and more likely responsible for the slight accuracy drop.
However, one bottleneck to the FAWCA approach is that the
solution network needs more parameters to train compared
to Brute-force for this particular dataset. As the solution
network of FAWCA approach is small, the algorithm does
not leverage more max-pooling layers to reduce the final
image dimension. Thus, having bigger image dimension by
the final conv layer results in bigger parameter size to the
well-tuned solution network.



Fig. 4: Well-tuned CNN architectures for Fashion-MNIST
dataset. Left: This network is generated by FAWCA. Right:
Larger CNN architecture is generated by Brute-force Ap-
proach.

Table 2: Performance of FAWCA compared to Brute-force
on Fashion-MNIST dataset.

Performance measures FAWCA Brute-force
Running Time (min) 96.89 208.64
Trainable parameters (in mil) 2.6 2.4
parameters memory size (MB) 9.90 9.13
Accuracy on test data (%) 93.41 92.76

6. Summary and Conclusion

In this paper, we present a Flexible-Greedy approach to
find well-tuned CNN architecture for any image classifica-
tion datasets. We also compare our FAWCA approach with
Brute-force technique to find well-tuned CNN. We find com-
petitive performance measures with respect to training time,
trainable parameters, and accuracy for the Flexible-Greedy
approach both in CIFAR-10 and Fashion-MNIST datasets.
In the case of CIFAR-10, FAWCA requires 57% less time
to find a well-tuned CNN compared to Brute-force without
compromising accuracy. For the Fashion-MNIST dataset,
FAWCA also shows competitive performance compared to
Brute-force. Thus, the approach we present in this paper has
significant contribution in the area of image recognition as
it finds well-tuned solution much more efficiently than brute
force approach.
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